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Abstract. Process models automatically discovered from event logs represent
business process behavior in a compact graphical way. To compare process vari-
ants, e.g., to explore how the system’s behavior changes over time or between
customer segments, analysts tend to visually compare conceptual process models
discovered from different “slices” of the event log, solely relying on the structure
of these models. However, the structural distance between two process models
does not always reflect the behavioral distance between the underlying event logs
and thus structural comparison should be applied with care. This paper aims to
investigate relations between structural and behavioral process distances and ex-
plain when structural distance between two discovered process models can be
used to assess the behavioral distance between the corresponding event logs.
Keywords: Process mining · Variant analysis · Structural distance · BPMN

1 Introduction

Process mining [1] is a branch science at the intersection of data science and process
management, focused on the analysis of event logs extracted from enterprise systems.
Key process mining capabilities include the (1) automated discovery of process models
from event logs, (2) performance mining to identify friction points in process perfor-
mance, (3) conformance checking to find discrepancies between actual and modeled
process behavior, and (4) variant analysis to assess different variants of the same busi-
ness process and identify root causes for their differences.

Automated process discovery algorithms generalize the behavior recorded in event
logs by constructing conceptual process models that represent this behavior.

Conformance checking offers a variety of methods for model-to-log (M2L) compar-
ison, when the process model corresponds to a prescribed process behavior and the log
corresponds to the actual behavior of the process. Most of these approaches provide a
single number to quantify the model and log similarity and are not supported by visual
analytics, i.e., discrepancies of the processes are not explicitly visualized.

Variant analysis techniques [18], on the other hand, focus on log-to-log (L2L) and
model-to-model (M2M) comparison. These techniques are used to compare variants of
the same process, e.g., purchasing processes for different customer types. Specialized
methods for L2L comparison were proposed in [4] and [5]. The approach [4] provides
results in the form of natural language expressions, while technique [5] visualizes dis-
crepancies on transition systems, that are either too abstract to represent real-world data
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or cannot be properly compared when detailed. Some of the conformance checking
techniques [2,9,15,16] can be also used in variant analysis and applied for L2L compar-
ison. However, none of the these techniques provide any visual information highlighting
the discrepancies of event logs.

In contrast to the L2L comparison techniques, that lack visual analysis, state-of-
the-art model-to-model (M2M) comparison methods are implemented in a variety of
tools [8,10,11,13,19] and are primarily intended to visualize differences in conceptual
process models. These methods explicitly highlight models’ discrepancies.

With state-of-the-art M2M comparison tools and process discovery techniques, pro-
cess analysts can discover models from event logs and then compare them applying
one of the M2M methods, instantly visualizing differences in process variants. Fig. 1
presents a prospective schema for variant analysis when an event log L is split into two
sub-logs: L1 and L2, then from these sub-logs process models M1 and M2 are dis-
covered, and after that these models are matched using one of the M2M comparison
techniques. Elements that should be deleted from M1 and added to match it with M2

are highlighted in red and green, respectively.
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Fig. 1: Using M2M comparison in variant analysis.

Although this approach seems feasible and readily available, it raises the following
research questions:

RQ 1: Can we use structural M2M comparison as a proxy for the behavioral L2L
comparison? In other words, do distances between process models correlate with
the distances between the event logs?

RQ 2: Does the correlation between L2L and corresponding M2M distances depend
on the algorithm used to discover the models from logs?

RQ 3: What is the role of representational biases, i.e., process modeling languages
and distance metrics, in applying M2M comparison for the L2L analysis?

To answer these questions we analyzed event logs of real-world systems. In order
not to depend on an application domain, we spit the event logs into sub-logs (temporal
slices) using time frames. This type of variant analysis is also known as concept drift
analysis [6]. It assesses how the process changes over time. We discover process models
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from the sub-logs and then relate structural distances between these process models and
behavioral distances between the corresponding sub-logs. We then answer the research
questions and make conclusions and recommendations regarding applying the M2M
techniques for the L2L analysis.

2 Motivating Example

In this section, we consider simple event logs and process models discovered from
these event logs. We then relate the differences of the event logs to the differences of
the corresponding process models. Consider event log L1 = {〈a, b, c, d, e〉, 〈a, d, e〉}.
This event log contains two traces, each of the traces is a sequence of events. Fig. 2
presents a BPMN model M1 discovered from L1 by applying Split miner [3] or Induc-
tive miner [12]. Note that for the event log L1, these two discovery algorithms produce
the same model M1.
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e

M1

Fig. 2: M1 discovered from L1 by Split and Inductive miner algorithms.

Event log L2 = {〈a, b, c, d, e〉, 〈a, d, e〉 〈a, b, e〉} includes the same set of traces as
event log L1 but also contains trace 〈a, b, e〉. For event log L2 different process discov-
ery algorithms produce different process models. Fig. 3 presents two process models
M1 and M2split discovered by Split miner from event logs L1 and L2, respectively. To
transform M1 to M2split, we remove two red arcs and add two green gateways and five
green arcs. In this case, the model is modified by adding an alternative path.
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Fig. 3: M1 and M2split models discovered by Split miner from L1 and L2, respectively.

Two models M1 and M2ind discovered by Inductive miner from event logs L1

and L2 are presented in Fig. 4. The differences between these two models are also
highlighted in red and green. In contrast to M2split, model M2ind significantly differs
from M1. One needs to remove four arcs, add four gateways and ten arcs to match
model M1

1. That means, we need to reorganize the entire structure of the model. How-
ever, L1 and L2 differ in only one trace. The limitation of Inductive miner is that it
cannot construct sequence flows going from one block of constructs to another, allow-
ing only regular hierarchical structures of embedded sub-processes (sequence, choice,

1 Although the model can be simplified (some gateways can be merged), we analyze BPMN
models as they are provided by the discovery algorithms.
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loop, parallel executions). This example demonstrates that different process discovery
algorithms relate L2L and M2M distances differently.
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Fig. 4: M1 and M2ind discovered by Inductive miner from L1 and L2, respectively.

3 Structural and Behavioral Process Distances

In this section, we define process distances that are later used for the analysis of corre-
lations between structural and behavioral characteristics of processes.

Each distance measure is considered together with a set of process models or event
logs and forms a metric space (M, ∆), where M is the set of models or event logs
(represented structurally as graphs or behaviorally as languages, i.e., sets of execution
sequences), and ∆ :M×M→ R is a distance function, such that:

1. Identity of indiscernible: ∀M ∈ M : ∆(M,M) = 0; ∀M1,M2 ∈ M: if M1 6=
M2, then ∆(M1,M2) > 0;

2. Symmetry: ∀M1,M2 ∈M : ∆(M1,M2) = ∆(M2,M1);
3. Triangle inequality: ∀M1,M2,M3 ∈M : ∆(M1,M2) ≤ ∆(M1,M3) +∆(M3,M2).

3.1 Structural process distance
The structural distance between two process models can be defined using the graph edit
distance [7], i.e., the minimum number of atomic operations (insertions and deletions)
that transform one process model to another. We will consider BPMN models contain-
ing only core elements (tasks, exclusive and parallel gateways, start and end events).
The specifics of BPMN process models are that their nodes are typed, and tasks are la-
beled. Thus, we only match nodes if they are of the same type and their labels coincide.

Once the minimum number of insertion and deletion operations is defined, we cal-
culate the structural distance between two process models M1 and M2 as:

∆struct(M1,M2) = 1− sim(M1,M2)

sim(M1,M2) + diff (M1,M2)
, (1)

where sim(M1,M2) is the number of matching elements and diff (M1,M2) is the
number of mismatching elements in M1 and M2. The structural distance is 0 for per-
fectly matching models and 1 for completely different models. The higher the distance
value, the more models differ.

Recall the models from the motivating example (Section 2) that were discovered by
Split (Fig. 3) and Inductive (Fig. 4) miners. The structural distance between the mod-
els discovered by Split miner ∆struct(M1,M2split) = 0.360 is less than the distance
between the models discovered by Inductive miner ∆struct(M1,M2ind) = 0.563.
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Besides quantifying the structural distance between process models, the proposed
distance measure also defines a metric space, i.e., the three properties are satisfied.

3.2 Behavioral process distances

The behavior of a process model, as well as an event log, is represented by a language,
i.e., a sets of label sequences, it encodes. The distance between two languages L1 and
L2 can be calculated as:

∆beh(L1, L2) = 1− ent•(L1 ∩ L2)

ent•(L1 ∪ L2)
, (2)

where ent• is the short-circuit entropy measure that estimates the language cardi-
nality (the number of sequences the language contains) [16]. This behavioral distance
measure gives a number between 0 and 1, which is 0 for identical languages, when
L1 ∩ L2 = L1 ∪ L2, and 1, when the languages have the empty intersection.

For event logs L1 and L2 from the motivating example (Section 2), the behavioral
distance is estimated as: ∆beh(L1, L2) = 0.416. The behavioral distances between
the corresponding process models discovered by Split miner and Inductive miner are
∆beh(LM1

, LM2split
) = 0.416 and ∆beh(LM1

, LM2ind
) = 0.708, respectively, where

LM1
,LM2split

,LM2ind
are the languages accepted by these models. Similar to the struc-

tural distance, this behavioral distance forms a metric space.
The behavioral distance measure, see eq. (2), is restrictive and assesses only the

share of common sequences of two languages. To also consider common subsequences
we use a so-called partial behavioral distance that is calculated for the “diluted” lan-
guages (for the details see [15]) that extend the initial languages by allowing any number
of label skips. Consider language L = {〈a, b, c〉, 〈a, d〉}. The corresponding “diluted”
language L′ = {〈a, b, c〉, 〈a, b〉, 〈a, c〉, 〈b, c〉, 〈a, d〉, 〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈〉} contains all
the subsequences of L that can be obtained by skipping some labels in the words of L.
The partial behavioral distance between languages L1 and L2 is defined as:

∆′
beh(L1, L2) = 1− ent•(L′

1 ∩ L′
2)

ent•(L′
1 ∪ L′

2)
, (3)

where L′
1 and L′

2 are the “diluted” versions of languages L1 and L2, respectively. This
measure assesses the share of common subsequences in two languages.

Although the behavioral distance, see eq. (2), forms a metric space, the partial be-
havioral distance, see eq. (3), does not satisfy the Identity of indiscernible rule. Consider
two languages: L1 = {〈a, b〉} and L2 = {〈a, b〉, 〈a〉}. Note that L1 6= L2, and at the
same time, L′

1 = L′
2 = {〈a, b〉, 〈a〉, 〈b〉, 〈〉}, and hence, ∆′

beh(L1, L2) = 0. However,
the partial behavioral distance satisfies the other space metric properties, i.e., Symmetry
and Triangle inequality.

4 Evaluation
This section analyzes real-world event logs by relating their behavioral distances to
the structural distances between BPMN models discovered from these event logs. The
distances between process models were calculated with BPMNDiffViz tool2 [8] – an

2 https://bitbucket.org/sivanov68/bpmndiffviz/src/master/.
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open-source tool for structural BPMN model comparison. To overcome the computa-
tional costs, we applied the greedy approximation algorithm that, according to [17],
gives the minimal edit distance in most of the cases for BPMN models discovered from
event logs. Behavioral distances were estimated using Entropia3 [14] – an open-source
and publicly available tool for measuring the quality of discovered process models.

We have analyzed seven real-world publicly available BPI (Business Process In-
telligence) Challenge event logs4. Table 1 presents characteristics of these event logs,
including the numbers of traces, events, and their occurrences. Note that one trace can
occur multiple times in a real-life event log. The table also contains event logs’ nota-
tions that will be used later to denote the corresponding distances.

Event log Name Notation # Traces # Trace Occur. # Events # Ev. Occur.

1 Domestic Declarations’20 • 99 10,500 17 56,437
2 International Declarations’20 • 753 6,449 34 72,151
3 Prepaid Travel Cost’20 • 202 2,099 29 18,246
4 Travel Permit Data’20 • 1,478 7,065 51 86,581
5 Request For Payment’20 • 89 6,886 19 36,796
6 Application Receipt Phase • 116 1,434 27 8,557
7 Road Traffic • 231 150,370 11 561,470

Table 1: Characteristics of the real-world event logs.

To not depend on a particular application domain, we have split each of the event
logs into six sub-logs that correspond to six equal time frames. Each sub-log includes
all the traces that contain events belonging to the corresponding time frame.

We then applied two process discovery algorithms, namely Split miner [3] and In-
ductive miner [12], to construct BPMN models from the given 42 sub-logs. Eight mod-
els produced by Split miner were not sound, i.e., could not be described as finite au-
tomata models, so their behavior could not be quantified, and hence, the corresponding
sub-logs were excluded from the evaluation.

All possible pairs of the sub-logs of the same event log and corresponding dis-
covered models were compared. Fig. 5 relates the behavioral sub-log distances to the
structural BPMN model distances. As observed from the two plots for the models dis-
covered by Split miner (Fig. 5a) and Inductive miner (Fig. 5b), the distances between
the sub-logs are more correlated with the structural distances between the correspond-
ing models discovered by Split miner.

While the structural distances between the models discovered by Split miner (Fig. 6a)
show good correlation with the partial behavioral distances between the corresponding
sub-logs (R2 = 0.723), for the models discovered by Inductive miner (Fig. 6b) the
correlation is less obvious (R2 = 0.371). However, in both cases the M2M compari-
son only approximates L2L distances. Especially this can be seen for the sub-logs of
the Road Traffic event log, i.e., behavioral distances between similar sub-logs cannot

3 https://github.com/jbpt/codebase/tree/master/jbpt-pm/entropia.
4 https://data.4tu.nl/
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(a) Models discovered by Split miner.
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(b) Models discovered by Inductive miner.

Fig. 5: Behavioral distances between the sub-logs and structural distances between the
discovered models.
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(a) Models discovered by Split miner.
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(b) Models discovered by Inductive miner.

Fig. 6: Partial behavioral distances between the sub-logs and structural distances be-
tween the corresponding models.

be differentiated using the M2M comparison. At the same time, M2M analysis allows
distinguishing the cases when event logs are similar or distinct.

Split miner and Inductive miner produce different types of BPMN models: while
models discovered by Inductive miner are hierarchical, models constructed by Split
miner represent a wider class of arbitrarily structured BPMN diagrams. To draw more
detailed conclusions, we need to understand the role of representational bias.

Fig. 7 and Fig. 8 relate distances and partial distances between languages of the an-
alyzed process models to the structural distances between these models. Structural dis-
tances between the process models discovered by Split miner (Fig. 7a, Fig. 8a) correlate
with the corresponding model behavioral distances, similarly to how they correlate with
the distances between the corresponding sub-logs (similar R2 values). However, struc-
tural distances between the models discovered by Inductive miner (Fig. 7b, Fig. 8b)
reflect differences in the behavior of these models better than in the behavior of the
corresponding sub-logs. In the next section, we discuss and explain this phenomenon.
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(a) Models discovered by Split miner.
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(b) Models discovered by Inductive Miner.

Fig. 7: Behavioral and structural distances between the discovered models.
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(a) Models discovered by Split Miner.
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(b) Models discovered by Inductive miner.

Fig. 8: Partial behavioral and structural distances between the discovered models.

5 Discussion

Although structural distances between process models produced by Inductive miner
correlate with the behavioral model distances, there is less correlation with the distances
of corresponding event logs. Which means we need to have a closer look at the relations
between behavioral M2M distances and corresponding L2L distances.

Fig. 9 shows a metric space (M, ∆) for languages that represent behaviors of pro-
cess models and event logs. Consider models M1 and M2 discovered from event logs
L1 and L2, and accepting languages LM1

and LM2
. According to the Triangle inequal-

ity, ∆(LM1
, LM2

) ≤ ∆(L1, L2) +∆(LM1
, L1) +∆(LM2

, L2) and ∆(LM1
, LM2

) ≥
∆(L1, L2)−∆(LM1

, L1)−∆(LM2
, L2), i.e., when approximating∆(L1, L2), distance

∆(LM1 , LM2), in the worst case, includes ∆(LM1 , L1) and ∆(LM2 , L2).
The aim of process discovery algorithms is to minimize ∆(LMi , Li), i ∈ {1, 2},

distances and construct models that are behaviorally close to the event logs. An ideal
discovery algorithm would construct models, such that ∆(LMi

, Li) = 0, and hence
∆(LM1

, LM2
) = ∆(L1, L2). However, this is not always possible and, first of all, be-
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cause of the representational bias. Even if a discovery algorithm makes the best possible
attempt to construct a model M that is behaviorally similar to the event log L, the dis-
tance ∆(LM , L) is bounded by ∆min(M, ∆), i.e., ∆(LM , L) ≥ ∆min(M, ∆), where
∆min(M, ∆) is the minimal distance between behaviors in the metric space.

LM1

L1 L2

LM2Δ (LM1, LM2)

Δ(L1, L2)

Δ(LM1, L1) Δ(LM2, L2)

Fig. 9: Behavioral distances be-
tween models and logs.

The metric space of block structured BPMN
models discovered by Inductive miner is sparser
than the space of BPMN models with arbitrary
structures constructed by Split miner because it
forms a proper subset of the models discovered
by Split miner, hence, the value of ∆min(M, ∆)
for Split miner is less than for Inductive miner, so,
it is easier for Split miner to find a model that is
behaviorally closer to a given event log. However,
Split miner can produce unsound models that can-
not be represented as finite automata models and
their behavior cannot be quantified. Apart from
the structuredness, there can be other constraints

on the sets of models that influence the density of the metric space. For instance, both
Split miner and Inductive miner construct process models with uniquely labeled tasks.

These observations provide answers to the research questions: RQ 1. In some cases,
M2M comparison can be used as a proxy for L2L comparison. However, M2M analysis
only approximates L2L distances; RQ 2. The discovery algorithm plays the pivotal
role in relating M2M and L2L distances, because of its two main characteristics: the
representational bias and the ability to construct models that behaviorally close to the
event logs (this characteristic depends on the representational bias, but also incorporates
the quality of the algorithm itself); RQ 3. The role of representational bias is crucial, and
together with different metrics it affects correlations between M2M and L2L distances.

These results explain when the M2M comparison can be used for the L2L analysis.
Namely, the analyst should consider two characteristics of the discovery algorithm that
affect correlations between M2M and L2L distances: (1) accuracy, i.e., the distance
between an event log and the discovered process model; (2) representational bias, i.e.,
the process modeling language. These results provide a tool for analysing process dis-
covery algorithms, i.e., to assess applicability of a new process discovery algorithm for
the comparison of event logs using M2M analysis, one should consider its accuracy and
representational bias and then relate to those of other discovery algorithms.

6 Conclusions and Future Work

This paper bridges the gap between behavioral and structural comparison techniques
in process mining. It explains the cases when behavioral differences in processes can
be learned from the structural differences in the corresponding process models. The
results are supported by experiments on real-life event logs. In future work, we plan to
conduct large scale experiments and consider further process discovery algorithms and
behavioral distance measures. We also plan to run an empirical study that will involve
participants assessing structural and behavioral distances between models and logs.
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